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1. INTRODUCTION

Several authors have examined the estimation of the proportions Pi, P21 ... ,Pm in the mixture

density

Az) = pfA(z) + pf2 (z) + "+ Pmf(Z) (1.1)

where the component densities are specified as belonging to some parametric family, usually the

normal. Hasselblad (1966), Day (1969), Hosmer (1973), Fowlkes (1979), and Redner and Walker

(1984) have examined the use of maximum likelihood (ML) estimation of the parameters in (1.1) under

the assumption that the component distributions are normal. Woodward et. al. (1984) investigated the

use of minimum distance estimation based on a mixture-of-normals projection family and using

Cramer-von Mises distance as an alternative to maximum likelihood. We denote estimates obtained

in this manner as MCVMD estimates. They were able to show that the MCVMDE is more robust

than the MLE to symmetric departures from the component normality such as the double exponential,

1(4), and t(2) distributions. Not surprisingly, however, the MLE was shown to be superior to the

MCVMDE when the components were normal.

Intuitively, robust procedures are those which are insensitive to small deviations from the

assumptions. Donoho and Liu (1988) have shown that the class of minimum distance estimators has

"automatic" robustness properties over neighborhoods of the true model based on the distance

functional defining the estimator. However, robust procedures such as minimum distance estimators

typically obtain this robustness at the expense of not being optimal at the true model. In fact, Bickel

a
(1978) describes robustness as "paying a price in terms of efficiency at the (true) model in terms of 0

reasonably good maximum MSE over the neighborhood." The behavior of the MCVMDE described

above is a good example of this trade-off. However, Beran (1977) has suggested the use of the

minimum Hellinger distance (MHD) estimator which has certain robustness properties and is Ades

VIpt cul

6
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asymptotically efficient at the true model. Although Beran suggested a computational procedure for

evaluating the MHDE, he provided very limited empirical evidence concerning its performance as an

estimator. Eslinger and Woodward (1990) investigated the use of the MHDE for estimation of the

parameters of the normal distribution with unknown location and scale. They demonstrated the

practical feasibility of employing the MHDE in the normal setting and demonstrated empirical

robustness far outside Hellinger neighborhoods of the true model, and also demonstrated the true model

efficiency properties shown theoretically by Beran. Tamura and Boos (1986) have investigated the

performance of the MHDE in the estimation of location and covariance in multivariate data. The

empirical findings of Eslinger and Woodward and of Tamura and Boos indicate that the MHDE is an

attractive estimator.

In this paper we examine the use of MHD estimation in the mixture of two normals whose

density is given by

) 2 2laf()= exp -- } + A exp 1z )- } (1.2)

where e = (IA1, a,,, P2, 0.2, p). We will let P(H) and P(L) denote the MHD and ML estimates of the

parameter p. In Section 2 we provide background material on the MHDE. In Section 3 we discuss its

application to (1.2) where p is unknown and the remaining parameters are known while in Section 4 we

investigate the case in which all five parameters are unknown.

2. THE MINIMUM HELLINGER DISTANCE ESTIMATOR

Let X1, X2, . . . , X n denote a random sample from some unknown population with

distribution function G. Further, let 9 = {F6 ; 9h)}, be a family of distributions, called the projection

family or projection model, depending on the (possibly vector valued) parameter 0. We will assume

here that the distributions in are mixtures of normals with densities of the form (1.2). A minimum
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distance estimator of 0 is a value 0 which minimizes the distance between the data distribution and the

projection model, usually by minimizing the "distance" between F9 and Gn where Gn is the empirical

distribution function

G(= M E (xi _ 0, (2.1)

where I denotes the indicator function. For example the MCVDE is obtained by using Cramer-von

Mises distance, w2, which for distribution functions Q, and Q2 is given by

00

W2(Q1, Q2) = I [Q1(z) - Q2 (z)] 2 dQ2(z) , (2.2)
-00

to compute the distance between F9 and Gn.

The Hellinger distance between two absolutely continuous distributions with distribution
1 1

functions Q, and Q2 is defined to be II qI - q II where q, and q2 are the corresponding densities and

the notation I * II denotes the usual L2 norm, i.e.

[1( 12 ol(2.3)q2 II =-

where the integration is with respect to Lebesgue measure on the real line. The MHD estimator of 0 is

defined as a value of 0H which minimizes 11 - A 11 where n is a suitable nonparametric density

estimator. We use the kernel density estimator

bn(z) - 7 (1- ) (2.4)

based on the Epanechnikov (1969) kernel wf z) = .75(l -z2) for I r 1
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Parzen (1962) found the ha which minimizes the integrated mean square error between a

kernel density estimator and the true density g. The optimal An in this sense is hn = a(w) 6(g) n"1/ s

where

5(W) [ f w ( y) dy (2.5)

and

fl(g) 02__) L ']-17 J (2.6)

For the Epanechnikov kernel a(w) = 1.71877, and when g(z) is a X(p,or2) density, i.e. with mean p

and variance a,2, then 3(g) = 1.364or. A natural implementation of the Epanechnikov kernel density

estimate is to use hn = (1.71877)(1.364sn)n 1I where sn is an estimate of scale. In the case in which

g(z) is a mixture of normals as in (1.2), ...g..)} dr is given by

/{ }' +=/{ 4' 2k-; P(2, 0J, 212) x-)

+ e z )( - 1)(z 2 -1) x (2.7)( 2x 0,20 )

where z - 1i z2 =i, and O(r, 1, o,2) denotes the normal density function with mean p and

variance 2. In our implementation we used hn = 1.71877 #(g)n - "/ where /(g) was obtained using

numerical integration to approximate the integral in (2.7). From (2.7) it is seen that in this setting,
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/3(g) depends on all five of the mixture model parameters rather than simply being a function of scale

as in the univariate normal setting.

3. MHD ESTIMATION WHEN ONLY p IS UNKNOWN

(a) Theoretical Results

As a first step in examining the use of the MHDE in the mixture-of-normals setting, we

consider the case in which fo(z) is given by (1.2) and only p is unknown. In Theorems 3.1 and 3.2 we

provide conditions for which the MHD estimator in this setting is consistent and asymptotically

normal. The consistency of the MHDE follows from the Hellinger consistency of the kernel density

estimator together with the equivalence of the Hellinger metric on the probability distributions and the

Euclidean metric on the parameter space, see Theorem 3 in Beran (1977) or Theorem 3.1 in Tamura

and Boos (1986). In this section the Tamura and Boos paper will be referred to as TB. Either of these

theorems implies the following:

Theorem 3.1. Let fe(z) = ef,(z) + (1 - 0)f2(z), where f, and f2 are distinct, continuous densities on

R, and let 9 c [0,1] = e. If jn is Hellinger consistent, then the MHDE is consistent.

The asymptotic distribution of i, is described in the next theorem, which is a consequence of

TB's Theorem 4.1.

Theorem 3.2. Let fq(z) be as in Theorem 3.1, and let 9 c (0,1) C [0,1] = 0. Denote by in the MHDE

of 0 based on a random sample of size n from a population with density f#. Also suppose:

1. fIzkfi(z)dz< oo and f Ih 5f2(z)dz < oo for every k > 0.

2.1ir f()-=0, i-= 1,2.Il--o
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3. f, and f2 satisfy Condition 5 from TB's Theorem 4.1.

4. The bandwidth for the kernel, h,., satisfies h, = an - ' for some c c (0, 1/4) and a>0.

Then -Fn(n, -0 - Bn) d M(0, I(0)-1), where 1(0) is the information matrix and Bn is given by

B=2 CnJ 004f (YFf~n-If) and Cn 40

where E[§n] =§n.

As a result of Theorem 3.2 we see that in is asymptotically fully efficient. Our utilization of

these results will be to the case in which fo is the mixture of normals in (1.2) with pl, '1, P2, and a 2

known, and as mentioned earlier, we will use the notation P(H) for in.

(b) Tmplementation Details

1 1

The estimates may be obtained by minimizing -f4 over 8 c [0,1]. This minimization was

performed using a golden section search as described in Press, et. a. (1986). The starting values for this

optimization were obtained by examining the values of the integral over a grid of O's on [0,I]; the

optimization routine was always started in an interval which contained the global minimum of the

quantity over the grid values. The integral was estimated using Simpson's rule with a mesh of 201

points over the support of in. The bandwidth of the estimate in was obtained by plugging into (2.7)

the known PIA, o1, P2, and 02 along with the mixing proportion estimated by the quasi-clustering

technique in Woodward et. al. (1984).

(c) Simulation Results

Simulations were run in order to examine empirically the theoretical results of this section

using the parameter configurations employed by Woodward, et. al. (1984). Simulations reported in
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this section and the next are based on mixing proportions .25, .5 and .75. For each of these mixing

proportions, we considered mixtures of the densities fl(z) and f2(z) where fl(z) is the density for the

random variable X = a Y and f2 (z) is the density associated with X Y + b where a>0 and b>0.

Thus, a is the ratio of scale parameters which we take to be 1 and /2 while b was selected to provide

the desired overlap between the two distributions. We considered "overlaps", as defined by Woodward,

et. al. (1984) of .03 and .1. In this section we consider the case in which Y is normally distributed.

For each set of configurations considered, 500 samples of size n=100 were generated from the

corresponding mixture distribution, and for each sample considered, the ML and MHD estimates were

obtained. In Table 3.1 we present the results of the simulations, showing simulation-based estimates of

the bias and MSE given by

ne

r1

MSE = 1 ' (p-)

where n. denotes the number of samples (500 in our case) and Pi denotes an estimate of p for the ith

sample. In the tables we report nMSE where n is the size of each sample (n = 100 in our case), and in

all cases, an approximate standard error of a tabled nMSE is (.0632)(nMSE). We also table empirical

measures of the relative efficiencies of the MHDE with the MLE, i.e.

- MSE (MLE)
MSE (MHDE)

Examination of the table shows that the asymptotic full efficiency with respect to the MLE guaranteed

by Theorem 3.2 holds approximately in the current setting with n=100 as evidenced by the fact that

all t values are near 1. In Figure I we show a normal probability plot of Pj(H) and Pi(L), i = 1, ... ,
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500, obtained in the simulation for the case p = .25, ratio of scale parameters = 1 and overlap = .1.

There it can be seen that the sampling distribution for each estimator closely approximates a normal

curve.

It should be noted that the asymptotic result in Theorem 3.2 is for the case in which the

bandwidth hn is nonstochastic. In our implementation this bandwidth is random since it depends on

the starting value estimate of the parameter p. The simulations indicate that the results hold in this

case.

4. MHD ESTIMATION WHEN p, p, 01, P2 AND 02 ARE UNKNOWN

We consider in this section the case in which the five parameters p, Pl, a"1, 12 and 0"2 in (1.2)

are all unknown, and we will again compare the MHD estimators with maximum likelihood. It is well-

known that the likelihood function is not bounded in tVis case (see Day 1969), and thus "ML"

estimators in this setting are obtained by finding an appropriate local maximum. We will empirically

compare the MHD and ML estimators in this setting using a large-scale simulation analysis in which

we examine the efficiency and robustness of the estimators.

(a) Implementation Details

1 1

Since minimizing f- in 11 is equivalent to maximizing

ff A , (4.1)

Beran (1977) and Eslinger and Woodward (1990) obtained MHD estimates by using Newton's method

to maximize (4.1). One advantage of this approach is the fact that in is zero outside a finite interval,

simplifying the integration in (4.1). Woodward and Eslinger (1983) investigated the corresponding use
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of Newton's method in the mixture-of-normals case with starting values for the iteration being obtained

using the quasi-clustering technique discussed by Woodward et. al. (1984) for obtaining starting values

of the mixture model parameters. However, they found that Newton's method in this setting often

failed to converge to reasonable estimates, with convergence occurring in less than 80% of the

simulated samples from some configurations. Since the MHDE, 0H' is defined to be a value which

minimizes the integral

S=1 { - , (4.2)

we approximated this integral using the trapezoidal rule to cbtain

k f1 2

where a1 = ak - -and ai = 1 for i = 2, 3,..., k-1 for a partition 1,, of (a,b], a finite

interval. In our case we took k = 200 and [a,b] to be the interval [X(,) - 3, X(n) + 3] where X()

denotes the jth order statistic. The procedure employed was to minimize the sum-of-squares in (4.3)

using IMSL routine ZXSSQ which utilizes the Marquardt-Levenberg algorithm (1963). Using this

procedure, the MHD estimates converged in at least 97.8% of the samples for each configuration

consid-5red. In the simulations, if convergence to "reasonable" values was not obtained, '.e starting

values were used as the corresponding estimates. Specifically, if any of the conditions &1 > X(n) -

X( ), 2 > X(n) - X(i), A, < X(1 ) - (X(n) - X(O))/10 or A2 > X(.) + (X(n) - X(,))/lo for any

estimate, the corresponding estimate was taken to be the starting value. The kernel density estimate

4n was obtained using the Epanechnikov kernel. In this case f(g) was obtained by substituting the

starting values for P, 01, P2, 0"2, and p into (2.7) and thel. performing the required integration

numerically.
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(b) Simulation Results

The MLE and MHDE estimates were examined using simulations based on the basic

framework used in Section 3, i.e. we considered the same mixing proportions, ratios of scale parameters

and overlaps as considered there. As before, 500 samples of size n=100 were generated from the

corresponding mixture distributions, and we considered the cases in which the simulated component

densities were normal, t(4) and t(2). For each sample considered, we computed the ML, MHD and

MCVMD estimates initialized employing the quasi-clustering technique used by Woodward et. al.

(1984). In Table 4.1 the simulation results for simulated mixtures of normal distributions indicate that

again, as in the results of Section 3, the MHDE appears to obtain full efficiency at the true model as

evidenced by k near one in all cases. However, the MCVMD estimators had larger MSE's than did the

MLE in 9 of the 10 cases with some of the efficiencies near .5. In Table 4.2 we show similar results for

samples which were simulated as mixtures of t(4) components. All of the t's in this table are greater

than one providing evidence that the MCVMDE and MHDE are more robust to the departures from

the assumption of normal components than is the MLE. Also, comparison of the MSE's for the MHD

and MCVMD estimators indicate that the robustness of the MHDE is comparable to that of the

MCVMDE in this setting. In Table 4.3 we briefly consider the case in which the component

distributions are 4(2), i.e. the departure from normality is more extreme. In this setting the

performance of the MLE further deteriorates with respect to that of the two minimum distance

estimators.

Although theoretical results similar to Theorem 3.1 and 3.2 have not been shown in this case,

the simulation results suggest that such results hold. Although our emphasis here has been on the

estimation of the mixing proportion, p, the ML and MHD routines used here obtain estimates for all

five of the parameters in (1.2). The results for location and scale parameters are similar to those
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shown here for the mixing proportion when sampling from normal mixtures. In the case of simulations

from the non-normal components considered here, the results for the location parameters also exhibited

patterns similar to those shown in Tables 4.2-4.3. However, the scale estimates obtained by all three

estimation methods often exhibited substantial bias in these non-normal cases.

5. CONCLUDING REMARKS

Our results indicate that the MHDE obtains full efficiency at the true model while performing

comparably with the MCVMDE under the symmetric departures from component normality

considered. Thus, the MHDE is a very attractive alternative to both the MLE and the MCVMDE in

these settings.

The computation of the MHDE in this setting is quite straightforward, yet in the cases

considered here, it took from 1.5 to 5 times longer to calculate than the MLE and about 2.5 times

longer than the MCVMDE. However, Eslinger and Woodward (1990) have shown that for very large

sample sizes, the MHDE can be faster to compute than competing estimators because of the fact that it

requires only one pass through the data to evaluate the kernel density estimator at the appropriate grid

points for numerical integration.

As would be expected, the performance of the estimators declines as the overlap between the

two components increases. The sensitivity to overlap was more extreme in the case in which all five

parameters are unknown since the location and scale of each component must then be estimated from

the data. Estimation in the case in which all five parameters are unknown can be a difficult problem

when there is not substantial separation between the components. In our simulations, the estimators

were quite poor at .1 overlap when all five parameters were estimated. In fact, in these cases the

starting values often outperformed the maximum likelihood and minimum distance estimators. This

behavior has been previously observed by Woodward, et. al. (1984) and Woodward and Gunst (1987).
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APPENDIX

Proof of Theorem 3.2: The proof proceeds by verifying conditions 1-7 of TB's Theorem 4.1. We begin

by setting up the notation.

Let 1, f2 be continuous densities on R, and for 9 c [0, 1] = e let f= 9f + (1-9)12, so thatf9

is a simple mixture of f/ and 12. As in TB, we let

So=

S= o S 01f'/ (11-12) .upp f

S-U3/ ( 2)2 'supp f'

and

b,(z) = dyp]

S(z) suppf(z)

_ 1 fl(z)-1 2(z) ,

where I denotes the indicator function of the support of Az) and where ](0) is the Fisher

Information which is in this case equal to

J ys _f 
0,2)2

Note that 1(8) > 0 if f, and 12 are not equal. Also, if 9 c(0,1), I(#) < oo, since
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yJ f 2) 2 ff2+f2<2f1 f2
/ < 2! 2f 2  +f 2

Finally, note that we often drop the constant a in the bandwidth A. = an-'; this does not effect the

result.

TB.1 The conditions on the kernel are satisfied by the Epanechnikov kernel (symmetric, compact

support = [-1, 1]). Our condition on hn implies nhn --+ oo and hn --* 0.

TB.2 Condition 2.b holds: e = [0, 1] is compact, f0 (z) is continuous in 0 and 01 9 02 Z11

fe2 on a set of positive Lebesgue measure.

TB.3 Let an =h- and let X ef, X -f and X f . Then for te [-1, 1],

n Prob0 { X - hnt I> dn}

=n Prob {X ,, - h.t I> a.}

+ n(1- ) Probf2 { X1 - hi I > on}

< n 0 9E, I Xf - hnl k/a

+ n(-0) Ef, - hnt k/
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Since hn - 0 as n - oo and E I X - hni Ik is a continuous function of hni (this is particularly easy

to see for k an even integer), EAI X 1 - hnt Ik and E I X1 - hi I k --. E1 I XI k and E X 1k

respectively, uniformly over t c [-1,1] • Thus,

asup Probe{X - ,iIn o} _5 0 (n aok)
tc[-1,1]

A choice of k can be made so that na" -. 0 as n -- oo.

TB.4 We examine

n 1/2 n j -C- n I f, - f2

-n C  
- ,9 TO

11 c
<n~ J2 + n- J5 f2

<n C-5 2n c 1 + aC-5 2n 1

This converges to zero since 0 < c < I"

TB.5 We must show

sup sup fO(z + t) 0(1).
l nI t C [-1,1l 48(r)
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Note

fo(z + kAt) = a f1 (z + Ant) + (1-0) f2(- + An')

flc+ Antf2t +An)

fh(z) supp f1 (z) + 12(z) SUPP 12(z

The result follows from our Condition 3.

TB.6

1. J 2 'fIa=1( < oo, sincef, 96 f2.

2. J ~z+ a) fo(z) dz = 1(#) - 2  f(z+z) - dxa
jk fq(z+a)

<1( 2 J(f1(z+Z) - f2(z+a)) 2fe(z) dr

< () 2 J ~+ j)2 fe(z) dt < oc,

independent of a.

)2 f

-Je
2 J ( f(z+a) - f2(-+a~) fi(z) - 12(z) 24f dx

- -i7 )
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f, J 4 (f)/ (z+,a) - f2(-+a) f o(z) ")
(() 

-
)

2 IIxa

The integral fJfi < oo since the tails of fh and f2 (and so f4) decrease faster than n- b , for any b > 0.

Thus, we need to show the L. norm goes to 0 as a - 0. To see this, note first that both

f(x+a) - f2 (z+a) 1
fe(z+a)1-

and

Thus
if1(-,+a) -f2(--a) 1/< +f

f (z+ a) I o) _ + j-2  ) .,"o- / - 0

asiz - o by Condition 2. Givene>0 3 M>0suchthat V IzI> MandanyacR,

f,(z+.) - f2(Z+a) I f'() 1/4 < c/2.

For Iz < M,

f(z+a) - f2(z+a) _f() - J2()j f,(X) -4 0

as a -- 0 uniformly overI z 5 M. So 3 6 > 0 with a < 6 implying
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f,'1(4) (f(z+a) - f2(x+a) f,(x) - f2() <To (z+a)f o(Z)  jIo

TB.7

I . Lemma 1 of Beran

(i) y s9 (z) = -I-1/2(I-f2), which is continuous in 0 V z c supp fO"

(ii) We need to show 11 8i0[ is continuous. We will show the stronger condition, that iO

is L2 continuous.

First note

J 2 = I I(0) < oo, so that i9 c,.

We now compare "e and ie+,1O:

0e+,&9)2 = (,,) 2  ( 1112) 1 +

S(A) 2 Jf f f 2 (f  2
e re+AG e
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(Aq) 2  + + 1G G) 2f

which converges to zero as A - 0.

2. Lemma 2 of Beran:

(i) se -- 1 )€;3/2 (A- 2 )2 ' which is continuous in 0 V z e supp fe.

(ii) To show 10 c L2 and 11 siel is continuous, we will show that 19 is in fact

L2 continuous.

First note

_f 22U (f) 2

I f

I V f2)2

Next we argue that 1 is L2 continuous:

2

fl___f2_2 (fl _!2)2

?/2 ?/2

- ~j3 F )2
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0+ '0 0+6,0P

2

+2 2)4 i2  -f2)

-~ ~94 (4T + 410 (If

+2J(%-,..r) (M,.-,) ) 2

From here, one may proceed as in Lemma 1 part (ii).

3. G = ) (0,1), since + (0,1)

4. J /2 0'=I(0)--1< o•
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Table 3.1 Simulation Results for Mixtures of Normal Components
With Only p Unknown

Sample Size = 100
Number of Samples = 500

.10 Overlap .03 Overlap
Ratio of

p Scale Factors (a) Estimator Bius nMSE t Bis nMSE t

.25 1 MHDE .011 .297 1.04 -. 000 .212 .99
MLE -. 003 .310 -. 002 .209

.50 1 MHDE .000 .309 1.11 .003 .281 1.00
MLE .000 .343 .002 .280

.25 -F MHDE .010 .311 .96 .000 .207 .98
MLE .001 .299 -. 001 .203

.50 - MHDE .002 .315 1.05 .003 .302 .99
MLE -. 002 .332 .001 .300

.75 2 MHDE -. 010 .297 1.07 -. 000 .216 1.03
MLE -. 002 .319 -. 001 .222



Table 4.1 Simulation Results for Mixtures of Normal Components
With All 5 Parameters Unknown

Sample Size = 100
Number of Samples = 500

.10 Overlap .03 Overlap
Ratio of

p Scale Factors (a) Estimator Bias nMSE E; Bis nMSE E

.25 1 MHDE .064 4.723 1.06 .006 .435 1.03
MCVMDE .142 8.944 .56 .028 1.029 .44
MLE .063 5.003 .088 .449

.50 1 MHDE .009 2.733 1.16 .005 .403 1.02
MCVMDE -. 009 3.683 .86 .004 .440 .94
MLE .007 3.158 .004 .412

.25 -F2 MHDE -. 006 2.005 1.06 -. 003 .383 1.25
MCVMDE .080 5.228 .40 .019 .831 .58
MLE -. 005 2.117 .005 .479

.50 2 MHDE -. 021 2.005 1.29 -. 006 .376 1.07
MCVMDE .005 2.951 .88 -. 000 .393 1.02
MLE -. 014 2.584 -. 002 .402

.75 -F2 MHDE -. 073 4.660 1.07 -. 003 .396 1.29
MCVMDE -. 119 7.742 .64 -. 022 1.020 .50
MLE -. 077 4.993 -. 002 .512



Table 4.2 Simulation Results for Mixtures of t(4) Components
With All 5 Parameters Unknown

Sample Size = 100
Number of Samples = 500

.10 Overlap .03 Overlap
Ratio of

p Scale Factors (a) Estimator Biis nMSE E BiAs nMSE ,

.25 1 MHDE .056 4.862 1.18 .015 .297 2.77
MCVMDE .066 4.144 1.38 .023 .428 1.92
MLE .069 5.725 .035 .823

.50 1 MHDE .002 3.489 1.56 .000 .314 1.51
MCVMDE .003 1.855 2.94 .001 .301 1.57
MLE .024 5.457 .003 .473

.25 -F MHDE .076 4.348 1.17 .014 .404 2.48
MCVMDE .095 4.968 1.02 .031 .652 1.54
MLE .090 5.080 .046 1.003

.50 -F MHDE .039 3.300 1.52 -. 003 .250 1.82
MCVMDE .025 1.978 2.54 -. 000 .254 1.80
MLE .024 5.030 .009 .456

.75 "- MHDE -. 031 4.780 1.77 -. 012 .273 1.90
MCVMDE -. 055 4.045 2.10 -. 019 .396 1.31
MLE -. 078 8.483 -. 014 .519



Table 4.3 Simulation Results for Mixtures of t(2) Components
With All 5 Parameters Unknown

Sample Size = 100
Number of Samples = 500

.10 Overlap .03 Overlap
Ratio of

p Scale Factors (a) Estimator BiAs nMSE E BiAs nMSE E

.25 1 MHDE .123 6.996 1.14 .013 .257 6.05
MCVMDE .079 3.745 2.13 .024 .328 4.74
MLE .097 7.962 .069 1.555

.50 1 MHDE -. 007 4.547 2.20 -. 002 .285 2.96
MCVMDE .006 1.172 8.55 -. 002 .282 2.99
MLE -. 003 10.016 .004 .843



+00

40

*40

+0

cc

0

0

00

caa

0+

+0

z


